M1.(a) (i) any one from:

- food / drink
- rocks / building materials
- cosmic rays / rays from space accept correctly named example
(ii) any one from:
- nuclear power / coal power (stations) accept nuclear waste
- nuclear accidents accept named accident eg Chernobyl
- nuclear weapons testing accept named medical procedure which involves a radioactive source accept radiotherapy nuclear activity / radiation is insufficient do not accept CT scans
(iii) different number of / fewer protons accept does not have 86 protons accept only has 84 protons
ordifferent atomic number
do not accept bottom number different reference to mass number negates this mark
(b) 168
accept 169 if clear, correct method is shown
allow 1 mark for a correct dose ratio involving the spine
eg 2:140 etc
or ratio of days to dose is 1.2
or ratio of dose to days is 0.83
(c)

Group A	Group B
J M O	K L N
	all correct any order within each group

(ii) similar (number) / same (number) / large (number) accept the same specific number in each group eg three reference to other factors such as age is neutral
(iii) how many people in each group developed cancer a clear comparison is required
(iv)there are no marks for Yes or No the
mark is for the reason

Yes

the benefit of having the scan is greater than the riskorthe risk is (very) small (compared to the chance from natural causes)
accept the risk is much greater from natural causes

No

no additional risk is acceptable

M2. (a) (average) time taken for the amount / number of nuclei / atoms (of the isotope in a sample) to halve
or
time taken for the count rate (from a sample containing the isotope) to fall to half accept (radio)activity for count rate
(b) 60 ± 3 (days)
indication on graph how value was obtained
(c) (i) cobalt(-60)
gamma not deflected by a magnetic field
or
gamma have no charge
dependent on first marking point
accept (only) emits gamma
gamma has no mass is insufficient do not accept any reference to half-life
(ii) strontium(-90)
any two from:

- only has beta
- alpha would be absorbed
- gamma unaffected
- beta penetration / absorption depends on thickness of paper if thorium(-232) or radium(-226) given, max 2 marks can be awarded
(iii) cobalt(-60)
shortest half-life
accept half-life is 5 yearsdependent on first marking point
so activity / count rate will decrease quickest
(iv) americium(-241) / cobalt(-60) / radium(-226)
gamma emitter
(only gamma) can penetrate lead (of this box) do not allow lead fully absorbs gamma
(ii) any two from:
- (frequent) flying accept stated occupation that involves flying
- living at altitude
- living in areas with high radon concentrations accept a specific area, eg Cornwall
- \quad living in a building made from granite (blocks)
- having more than the average number of X-rays
or
having a CT scan
accept more medical treatments
- working in a nuclear power station accept any suggestion that could reasonably increase the level from a specific source
(b) (i) to be able to see the effect of exposure (to radon gas)
or
as a control
accept to compare (the effect of) exposure (with no exposure)
(ii) increased levels of exposure increases the risk (of developing cancer) accept exposure (to radon gas) increases the risk
smoking increases the (harmful) effect of radon answers that simply reproduce statistics are insufficient
(c) LNT model - risk increases with increasing radiation (dose) level

Page 6

accept in (direct) proportion
accept low doses increase the risk

Radiation hormesis - low radiation (dose) levels reduce the risk
(d) two valid points made - examples:

- animals have no choice and so should not be used
- should not make animals suffer
- better to experiment on animals than humans
- experiments lead to a better understanding / new knowledge
- experiments may lead to health improvement / cures for humans results for animals may not apply to humans is insufficient

M4. (a) (i) 2.5
(ii) The radiation dose from natural sources is much greater than from artificial sources
(b) (i) any one from:

- different concentrations in different rooms
- to average out daily fluctuations
accept to find an average
accept to make the result (more) reliable / valid do not accept to make more accurate on its own
(ii) average level (much) higher (in C and D) accept converse
some homes have very high level (in C and \mathbf{D}) accept maximum level in \boldsymbol{A} and \boldsymbol{B} is low
or
maximum level in some homes (in \mathbf{C} and \mathbf{D}) is very high accept higher radiation levels (in C and D) for $\mathbf{1}$ mark

M5. (a) (i) nuclear reactor
star
(ii) nuclei are joined (not split)
accept converse in reference to nuclear fission do not accept atoms are joined
(b) (i) any four from:

- neutron
- (neutron) absorbed by U (nucleus)
ignore atom
do not accept reacts do not accept added to
- forms a larger nucleus
- (this larger nucleus is) unstable
- (larger nucleus) splits into two (smaller) nuclei / into Ba and Kr
- releasing three neutrons and energy
accept fast-moving for energy
(ii) $56(\mathrm{Ba})$

57 (La)
if proton number of Ba is incorrect allow 1 mark if that of La is 1 greater
${ }_{-1}^{0} \beta$
accept e for β
${ }_{56}^{139} \mathrm{Ba} \longrightarrow{ }_{57}^{139} \mathrm{La}+{ }_{-1}^{0} \beta$
scores 3 marks

M6. (a) (both graphs show an initial) increase in count rate accept both show an increase
(b) only the right kidney is working correctly
any two from:
if incorrect box chosen maximum of 1 mark can be awarded reference to named kidney can be inferred from the tick box

- count-rate / level / line for right kidney decreases (rapidly)
it decreases is insufficient
- count-rate / level / line for left kidney does not change it does not change is insufficient
- radiation is being passed out into urine - if referring to right kidney
- radiation is not being passed out - if referring to the left kidney
- left kidney does not initially absorb as much technetium-99

